Signalling pathways underlying structural plasticity of dendritic spines
نویسندگان
چکیده
Synaptic plasticity, or changes in synaptic strength, is thought to underlie learning and memory. Imaging studies, mainly in brain slices, have revealed that long-term synaptic plasticity of excitatory synapses in hippocampal neurons is coupled with structural plasticity of dendritic spines, which is thought to be essential for inducing and regulating functional plasticity. Using pharmacological and genetic manipulation, the signalling network underlying structural plasticity has been extensively studied. Furthermore, the recent advent of fluorescence resonance energy transfer (FRET) imaging techniques has provided a readout of the dynamics of signal transduction in dendritic spines undergoing structural plasticity. These studies reveal the signalling pathways relaying Ca(2+) to the functional and structural plasticity of dendritic spines.
منابع مشابه
Actin-binding proteins and signalling pathways associated with the formation and maintenance of dendritic spines.
INTRODUCTION Dendritic spines are the main sites of excitatory synaptic contacts. Moreover, they present plastic responses to different stimuli present in synaptic activity or damage, ranging from an increase or decrease in their total number, to redistribution of progenitor dendritic spines, to variations in their size or shape. However, the spines can remain stable for a long time. BACKGROU...
متن کاملDifferential modulation of drug-induced structural and functional plasticity of dendritic spines.
Drug-induced plasticity of excitatory synapses has been proposed to be the cellular mechanism underlying the aberrant learning associated with addiction. Exposure to various drugs of abuse causes both morphological plasticity of dendritic spines and functional plasticity of excitatory synaptic transmission. Chronic activation of μ-opioid receptors (MOR) in cultured hippocampal neurons causes tw...
متن کاملRole of G Protein-Coupled Receptors in the Regulation of Structural Plasticity and Cognitive Function.
Cognition and other higher brain functions are known to be intricately associated with the capacity of neural circuits to undergo structural reorganization. Structural remodelling of neural circuits, or structural plasticity, in the hippocampus plays a major role in learning and memory. Dynamic modifications of neuronal connectivity in the form of dendritic spine morphology alteration, as well ...
متن کاملExamining Form and Function of Dendritic Spines
The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy h...
متن کاملActivity-Dependent Dendritic Spine Structural Plasticity Is Regulated by Small GTPase Rap1 and Its Target AF-6
Activity-dependent remodeling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the mechanisms that coordinate synaptic structural and functional plasticity are not well understood. Here we investigate the signaling pathways that enable excitatory synapses to undergo activity-dependent structural modifications. We report that activation of NMDA recepto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 163 شماره
صفحات -
تاریخ انتشار 2011